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For speech enhancement, most existing approaches do not consider the differences, between various
types of noise, which significantly affect the performance of speech enhancement. In this paper, we
propose a novel speech enhancement approach by taking into account the different characteristic sta-
tistical properties of various noise on the basis of noise classification. To classify noise, an effective noise
classification method is firstly developed by exploiting the features of noise energy distribution in the
Bark domain. Then, based on the noise types, the speech enhancement approach is obtained by forming
the optimal parameter combinations for the optimally modified log-spectral amplitude (OM-LSA) speech
estimator with the improved minima controlled recursive averaging (IMCRA) noise estimator, where the
parameter combinations consisting of the smoothing parameters for smoothing the noisy power spec-
trum and the recursive averaging in the noise spectrum estimation as well as the weighting factor for
the a priori SNR estimation, are built through the enhancement of noisy speech samples. Finally, exten-
sive experiments are carried out in terms of objective evaluation under various noise conditions, and the
experimental results show that the proposed approach yields better performance compared with the
conventional OM-LSA with IMCRA in speech enhancement.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Single channel speech enhancement has been one of the most
widely used approaches for the enhancement of noisy speech
which is a crucial component of speech signal processing in noisy
environments [1–6]. The spectral subtraction method proposed by
Boll in [7] is a popular single channel speech enhancement tech-
nique, which substantially reduces the noise level in the noisy
speech. According to the basic principle of spectral subtraction
method, two major components generally should be considered
in a practical speech enhancement system: the estimation of
speech, and the estimation of noise power spectrum [8,9].

As for estimating the speech, a commonly used approach is the
minimum mean-square error (MMSE) short-time spectral ampli-
tude (STSA) estimator, which is derived by Ephraim and Malah in
[10]. By utilizing decision directed approach to smooth the a priori
SNR recursively, the MMSE estimator successfully conquers the
main drawback of the conventional spectral subtraction method
that it may introduce an annoying distortion called musical noise
into the enhanced speech. Subsequently, Ephraim and Malah
derived a MMSE log-spectral amplitude (LSA) estimator in
literature [11] which minimizes the mean-square error of the
log-spectra. Further, by modifying the gain function of the LSA
estimator based on two hypotheses associated with the speech
presence uncertainty, Cohen presented an optimally modified
LSA (OM-LSA) speech estimator [8], which shows significant super-
iority in speech enhancement.

Considering the noise power spectrum estimation, Martin
proposed a noise PSD estimation algorithm based on minimum
statistics (MS) [12], which tracks the minima values of the
smoothed spectrum of the noisy speech over a finite window,
and then multiplies the result by a bias factor to achieve the
unbiased estimate of noise spectrum. Another successful noise
PSD estimation approach, known as the minima controlled
recursive averaging (MCRA) algorithm [13], is to search the local
minimum similarly to MS, and then compare the ratio of the noisy
speech to the local minimum against a threshold to find the noise-
only regions. The noise PSD estimate is updated by tracking the
noise-only regions of the noisy speech spectrum. In [14], Cohen
presented the improved MCRA (IMCRA), which uses a different
method to track the noise-only regions based on the estimated
speech presence probability. In [15], Rangachari and Loizou
updated the noise PSD estimate continuously in every frame using
the speech presence probability which was obtained by comparing
the ratio of noisy speech power spectrum to its local minimum
against a frequency-dependent threshold. The more recent work
on noise PSD estimation is the MMSE-based algorithm with bias
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compensation (MMSE-BC) proposed by Hendriks and Heusdens
[16–18], which employs a limited maximum likelihood estimate
of the a priori SNR to obtain an MMSE estimate of the noise period-
ogram. The MMSE-BC estimator reduces the computational
complexity greatly without degrading the performance of noise
tracking. In [19], Gerkmann and Hendriks further improved the
MMSE-BC estimator by making use of a soft speech presence
probability with fixed priors, and presented an unbiased MMSE-
based noise PSD estimator, which is of an even lower complexity
than the MMSE-BC.

To distinguish speech from noise, both the estimation of speech
and the estimation of noise power spectrum have fully considered
the differences between speech and noise. For example, the
estimation of noise PSD is generally based on the assumption that
the noise power is varying more slowly than the speech power.
Besides, the differences are also made between different types of
noise in the characteristic statistical properties. However, the
design of the speech enhancement algorithms usually does not
take the differences into consideration, which causes these algo-
rithms to be not always optimal for various noise environments.
As to improve the performance of speech enhancement, these algo-
rithms should be adjusted to adapt to different types of noise and
deal with them respectively. In other words, we can improve the
performance of these speech enhancement algorithms by
incorporating the noise classification into them.

For noise classification, a variety of features have been
proposed, including time domain features [20], spectral domain
features [21] and the features derived from linear predictive coding
(LPC) and wavelet transforms [22,23], of which the mel-frequency
cepstral coefficients (MFCC) features are most widely used. Much
work has been done to recognize the nonspeech audio based on
the MFCC features. Ma et al. described an acoustic environment
classifier using a 39-dimensional MFCC feature vector [24]. In
[25], to yield higher recognition accuracy for environmental
sounds, the matching pursuit algorithm is used to obtain effective
time–frequency features as the supplement of the MFCC features.
Gopalakrishna et al. utilized the MFCC + D MFCC features to classify
the background noise environment in real time for automatic
tuning of noise suppression algorithms for cochlear implant appli-
cations [26]. The classification accuracy for the above studies
varied from 80% to 95% under different databases, which implies
that there is still work to do to extract more effective features for
noise classification.

In this paper, on the basis of the speech enhancement scheme
based on the IMCRA noise PSD estimator and the OM-LSA speech
estimator, we propose a speech enhancement approach using noise
classification of noisy speech. Firstly, we define a parameter
combination related to the noise types, which includes some
principal parameters in the OM-LSA with IMCRA, such as the
smoothing parameters for the smoothing of the noisy power spec-
trum and the recursive averaging in the noise spectrum estimation,
as well as the weighting factor for the a priori SNR estimation.
Through the enhancement of noisy speech samples, by identifying
the optimal parameter combinations for the speech enhancement
scheme based on the IMCRA and the OM-LSA under specific noise
environments, we obtain the optimal parametric OM-LSA with
IMCRA. Secondly, to recognize the noise type of the noisy speech,
we propose a support vector machine-based noise classification
method, which exploits the features of noise energy distribution
in the Bark domain. Thirdly, by choosing the the optimal parameter
combination for the speech enhancement scheme based on the
OM-LSA and the IMCRA according to the recognized noise type,
we implement the noise PSD estimation and calculate the
enhanced speech using the optimal parametric OM-LSA with
IMCRA. Objective quality tests are performed to evaluate the pro-
posed approach under various noise environments, which validate
the superior performance of the proposed approach to the conven-
tional speech enhancement scheme based on the OM-LSA and the
IMCRA.

The rest of the paper is organized as follows. Section 2 briefly
reviews the speech enhancement scheme based on the IMCRA
and the OM-LSA, and Section 3 presents the optimal parametric
OM-LSA with IMCRA for various noise. Section 4 introduces the
support vector machine-based noise classification method. In
Section 5, we describe the proposed noise classification-based
speech enhancement approach. The performance of the proposed
noise classification method and speech enhancement approach is
evaluated in Section 6. Finally, conclusions are given in Section 7.
2. Review of OM-LSA with IMCRA

Let y denote an observed noisy signal in the time domain, which
is the sum of a clean speech x and an uncorrelated additive noise d.
By applying the short-time Fourier transform (STFT), we have

Yðk; lÞ ¼ Xðk; lÞ þ Dðk; lÞ ð1Þ

in the time–frequency domain, where k represents the frequency
bin index, and l is the frame index.

In the IMCRA, the noise PSD is estimated by recursively averag-
ing past spectral power values of the noisy measurement during
periods of speech absence and holding the estimate during speech
presence [14]. Under speech presence uncertainty, the conditional
speech presence probability is employed, and the recursive averag-
ing can be obtained by

kdðk; lþ 1Þ ¼ ~adðk; lÞkdðk; lÞ þ ½1� ~adðk; lÞ� Yðk; lÞj j2 ð2Þ

where

~adðk; lÞ , ad þ ð1� adÞpðk; lÞ ð3Þ

is a time-varying frequency-dependent smoothing parameter.
adð0 < ad < 1Þ denotes a smoothing parameter, and pðk; lÞ is the
conditional speech presence probability. Through introducing a bias
compensation factor b, the noise PSD estimate is given by

k̂dðk; lþ 1Þ ¼ b � �kdðk; lþ 1Þ ð4Þ

The estimation of the speech presence probability is based on a
Gaussian statistical model in the IMCRA, and is obtained by

pðk; lÞ ¼ 1þ qðk; lÞ
1� qðk; lÞ ð1þ nðk; lÞÞ expð�tðk; lÞÞ

� ��1

ð5Þ

where qðk; lÞ is the a priori probability for speech absence, c and n
represent the a posteriori and the a priori SNRs respectively, and
t , cn=ð1þ nÞ.

In order to calculate the a priori speech absence probability
qðk; lÞ, two iterations of smoothing and minimum tracking are
carried out. Let Sðk; lÞ denote the smoothed periodogram of the
noisy measurement, then the time smoothing in the first iteration
is performed by a first-order recursive averaging

Sðk; lÞ ¼ asSðk; l� 1Þ þ ð1� asÞSf ðk; lÞ ð6Þ

where asð0 < as < 1Þ is a smoothing parameter, and Sf ðk; lÞ is
obtained by the frequency smoothing of the noisy power spectrum

Sf ðk; lÞ ¼
Xx
i¼�x

bðiÞ Yðk� i; lÞj j2 ð7Þ

where b denotes a normalized window function of length 2xþ 1.
The time smoothing in the second iteration is similar to that in
the first iteration, and utilizes the same smoothing parameter.
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Fig. 1. The average Cov l for various values of as and ad according to different values of a: (a) a ¼ 0:88; (b) a ¼ 0:89; (c) a ¼ 0:90; (d) a ¼ 0:91.

W. Yuan, B. Xia / Applied Acoustics 96 (2015) 11–19 13
The a priori speech absence probability is controlled by the
minima values of Sðk; lÞ, which is searched within a finite window
of length D, for each frequency bin

Sminðk; lÞ , min Sðk; l0Þ l� Dþ 1 6 l0 6
�� l

� �
ð8Þ

According to Eq. (5), the computation of the speech presence
probability pðk; lÞ also requires an estimate of the a priori SNR. In
the IMCRA, the a priori SNR is commonly estimated by

n̂ðk; lÞ ¼ aG2
H1
ðk; l� 1Þcðk; l� 1Þ þ ð1� aÞmax cðk; lÞ � 1;0f g ð9Þ

where a is a weighting factor, GH1 is the spectral gain function in the

case that speech is present, and cðk; lÞ , Yðk; lÞj j2=kdðk; lÞ.
Constrained to a lower bound threshold Gmin when speech is

absent, the spectral gain for the OM-LSA is given by

Gðk; lÞ ¼ fGH1 ðk; lÞg
pðk;lÞG1�pðk;lÞ

min ð10Þ
3. Optimal parametric OM-LSA with IMCRA

The OM-LSA with IMCRA estimates the noise spectrum and
speech frame by frame, and takes into account the strong correla-
tion of speech activities in the adjacent frames by carrying out the
smoothing of noisy power spectrum (Eq. (6)), the recursive averag-
ing in the noise spectrum estimation (Eq. (2)) and the non-linear
recursive procedure in the a priori SNR estimation (Eq. (9)). Three
parameters as;ad and a are set to control the tradeoff between
the current frame and the previous frame in Eqs. (6), (2) and (9),
respectively. The choices of these parameters deeply affect the
estimation of the noise spectrum and the a priori SNR, and further
have a large impact on the performance of the OM-LSA speech
estimator, which means that these parameters are closely related
to the speech enhancement performance of the OM-LSA
with IMCRA. These parameters are set to fundamental values
independently of the noise environments in the conventional
OM-LSA with IMCRA. Actually, due to the different statistical
properties of various noise, they have different interference with
the speech signals in the noisy speech, therefore the correlation
of speech presence between the current frame and the previous
frame is different according to the noise types. Thus, these parame-
ters should vary in terms of noise types to ensure the tracking of
speech presence.

The optimal parameter combination is a combination of the
aforementioned parameters, with which the OM-LSA with IMCRA
can achieve the most accurate estimate of speech for specific noise.
The accuracy of the speech estimate is reflected in the quality of
the enhanced speech, which is measured in this paper using the
well-known composite measure in [27]. We choose the composite
measure for overall quality from the three composite measures,
which is verified to have significant correlation with the subjective
speech quality [27,28], and is given as

Covl ¼ 1:594þ 0:8055SPESQ � 0:512SLLR � 0:007SWSS ð11Þ

where SPESQ ; SLLR and SWSS represent the measurements according
to the perceptual evaluation of speech quality (PESQ), the log-
likelihood ratio (LLR), and the weighted-slope spectral distance
(WSS), respectively.

We seek the optimal parameter combinations through the
enhancement of noisy speech samples. 20 clean speech segments
chosen from IEEE sentence database [29] are utilized to create
the samples. Half of them are from two male speakers, denoted
by ‘sp01’, ‘sp02’, . . ., ‘sp10’, while the others are from two female
speakers, denoted by ‘sp11’, ‘sp12’, . . ., ‘sp20’. The noise signals
are taken from the Noisex92 database [30], including: N1, white
noise; N2, F-16 cockpit noise; N3, HF channel noise; N4, factory
floor noise 1; N5, speech babble; N6, Pink noise; N7, car interior
noise; N8, destroyer operations room noise; N9, destroyer engine
room noise; N10, jet cockpit noise 1; N11, tank noise; N12, military
vehicle noise. Both the speech and the noise signals are sampled at
8 kHz. Applying all 12 types of noise to the 20 segments of clean
speech with 0, 5 and 10 dB global SNRs, we obtain 20� 12� 3
segments of noisy speech.



Table 2
Mapping from 256-point STFT bins to Bark bands at a sampling frequency of 8 kHz.

Bark Band
Number (j)

STFT Bins Frequencies (Hz)

Interval (lbðjÞ-ubðjÞ) Number of bins

1 1–3 3 0–94
2 4–6 3 94–187
3 7–10 4 187–312
4 11–13 3 312–406
5 14–16 3 406–500
6 17–20 4 500–625
7 21–25 5 625–781
8 26–29 4 781–906
9 30–35 6 906–1094

10 36–41 6 1094–1281
11 42–47 6 1281–1469
12 48–55 8 1469–1719
13 56–64 9 1719–2000
14 65–74 10 2000–2312
15 75–86 12 2312–2687
16 87–100 14 2687–3125
17 101–118 18 3125–3687
18 119–128 10 3687–4000
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Fig. 2. Noise classification of a segment of speech corrupted by babble noise (N5) at
0 dB SNR. (a) Noisy speech waveform. (b) Classification results of the first 15 frames.
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The optimal parameters are searched within the range
½0:80;0:99�, and the searching step is 0.01. For each noise type,
we first set a to be a fixed value, and let as and ad vary within
the range to produce different combinations, denoted as

fðai
s;ai

dÞg
Nc

i¼1. The 20� 3 segments of noisy speech corrupted by
the same noise with different SNRs are processed using the
OM-LSA with IMCRA with these different combinations respec-
tively. The average Cov l of the 20� 3 segments of enhanced speech
is calculated for each combination, and the combination which
achieves the maximal average is indicated. And then, with the
variation of a, there will exist different combinations that maxi-
mize the average according to different values of a, where the
one achieves the largest average is denoted as ða�s ;a�dÞ, and its
corresponding a is denoted as a�. Thus, ða�s ;a�d;a�Þ is the optimal
parameter combination, with which the global maximal average
Cov l is obtained.

Fig. 1 is an example to show the procedure of deriving the opti-
mal parameter combination for white noise. Fig. 1(a)–(d) show the
average Covl for various values of as and ad with a equaling 0.88,
0.89, 0.90 and 0.91, respectively. It can be observed that the
maximal average for each value of a is obtained at ð0:90;0:89Þ in
Fig. 1(a), ð0:89;0:89Þ in Fig. 1(b), ð0:88;0:89Þ in Fig. 1(c) and
ð0:86;0:90Þ in Fig. 1(d). Among them, the global maximal average
is obtained at ð0:88;0:89Þ in Fig. 1(c) with a equaling 0.90.
Therefore, the optimal parameter combination for white noise is
ð0:88;0:89;0:90Þ. Further, the optimal parameter combinations
for all the given noise types are shown in Table 1. By choosing
the optimal parameter combination for the OM-LSA with IMCRA
according to the particular noise type, we achieve the optimal
parametric OM-LSA with IMCRA.

4. Noise classification

Before applying the optimal parametric OM-LSA with IMCRA to
speech enhancement, we should judge the noise type first. In order
to classify the noise accurately, the features that effectively differ-
entiate varieties of noise should be selected. In this paper, we
exploit the features of noise energy distribution in the Bark domain
and model them using the support vector machine (SVM) to
achieve a successful noise classification method.

4.1. Feature extraction

Unlike the Fourier transformation, the Bark scale adopts the
multi-resolution analysis and divides the time–frequency space
non-equally. The Bark bands are narrower at the region of low fre-
quencies than those at the region of high frequencies. By mapping
the noise energy from the uniform time–frequency domain to the
Bark domain, we acquire a feature vector that can effectively
distinguish different types of noise. Let Dðk; lÞ denote the short-
time Fourier transformation of a noise signal, and the smoothing
of the noise power spectrum in time is performed as

Pðk; lÞ ¼ apPðk; l� 1Þ þ ð1� apÞ Dðk; lÞj j2 ð12Þ
Table 1
Optimal parameter combinations for various noise.

Noise a�s a�d a� Noise a�s a�d a�

white 0.88 0.89 0.90 car interior 0.93 0.89 0.93
F-16 0.93 0.86 0.88 destroyer operations 0.90 0.91 0.91
HF channel 0.91 0.88 0.89 destroyer engine 0.93 0.81 0.88
factory1 0.95 0.84 0.90 jet1 0.93 0.90 0.93
babble 0.97 0.82 0.95 tank 0.93 0.88 0.89
pink 0.89 0.90 0.90 military vehicle 0.94 0.81 0.93
where Pðk; lÞ is the smoothed noise power spectrum, and ap ¼ 0:5 is
the smoothing parameter.

The mapping from 256-point STFT bins to Bark bands at a sam-
pling frequency of 8 kHz is shown in Table 2, and it is the same as
that in [31]. The noise energy in each Bark band is calculated
according to its corresponding upper STFT bin and lower STFT
bin in Table 2,

Sðj; lÞ ¼
XubðjÞ

k¼lbðjÞ
Pðk; lÞ ð13Þ

where j is the Bark band number, and j ¼ 1;2; � � � ;18. The total noise
energy of the lth frame is

StðlÞ ¼
XN

k¼1

Pðk; lÞ ð14Þ

where N ¼ 128 is the total number of STFT bins. Then the ratio of
the noise energy in the jth Bark band of the lth frame to the entire
noise energy in the lth frame is defined by



Fig. 3. Block diagram of the proposed speech enhancement approach.
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Fig. 4. Noise classification of a 12-s noise segment containing 12 types of noise.
(a) Waveform of the noise segment. (b) Classification results of the noise segment.

Table 3
Classification accuracy for the pure noise signals.

Noise Accuracy (%)

MFCC13 MFCC26 MFCC39 BARK18

N1 84.94 94.58 98.60 100.00
N2 74.48 88.14 95.61 99.86
N3 81.54 92.93 98.06 100.00
N4 61.49 70.22 79.66 92.54
N5 97.77 96.83 96.61 96.87
N6 78.83 86.39 91.95 97.40
N7 78.82 91.26 97.63 100.00
N8 87.42 95.56 98.25 99.58
N9 98.71 99.66 99.86 100.00
N10 98.54 99.15 99.60 99.94
N11 92.07 98.94 99.88 99.99
N12 87.94 93.95 97.21 99.98
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RSðj; lÞ ¼
Sðj; lÞ
StðlÞ

ð15Þ

Subsequently, to obtain a more effective feature vector for classifi-
cation, we introduce a power g for the ratio RSðj; lÞ, and denote its
exponential form as Rg

Sðj; lÞ. Then we acquire a 18-dimensional
feature vector for the lth frame, which is given by

r ¼ ðRg
Sð1; lÞ;R

g
Sð2; lÞ; . . . ;Rg

Sð18; lÞÞ ð16Þ

As shown in Eq. (16), different values of g will lead to different
expressions of the feature vector, according to the performance of
the feature vectors in the classification experiments, we decide
the value of g to be 1=4 in this paper.
4.2. Training of SVM

The SVM classifier is used to determine the noise type of every
frame. SVM is a successful technique for data classification derived
from statistical learning theory [32]. The main idea of SVM is to
transform the input data set into a higher dimensional feature
space by using a kernel function, where it is easier to classify with
linear decision surfaces. Note that the SVM is originally designed
for the binary classification problem, to solve the multi-class clas-
sification problem like that in this paper (12 classes), many
approaches have been proposed to reduce the single multi-class
problem into multiple binary classification problems.

In this paper, the SVM models are trained using LIBSVM
software [33], in which the ‘‘one-against-one’’ approach [34] is
implemented for multi-class classification. For a problem with c
classes, the ‘‘one-against-one’’ approach constructs a total number
of cðc � 1Þ=2 classifiers, and each of them trains data from two
classes.

To obtain the training and testing data, all 12 types of noise
(N1-N12) in Section 3 is windowed into 256-point frames via a
hamming window with 75% overlap. And then we choose a



Table 4
Classification accuracy for noisy speech for various noise types and levels.

Noise SNR (dB) Noise SNR (dB)

0 (%) 5 (%) 10 (%) 0 (%) 5 (%) 10 (%)

N1 100.00 100.00 100.00 N7 100.00 100.00 100.00
N2 100.00 100.00 100.00 N8 100.00 100.00 100.00
N3 100.00 100.00 100.00 N9 100.00 100.00 100.00
N4 100.00 100.00 100.00 N10 100.00 100.00 100.00
N5 100.00 100.00 100.00 N11 100.00 100.00 100.00
N6 100.00 100.00 100.00 N12 100.00 100.00 100.00

Table 5
Results of composite measure for signal distortion (Csig) obtained from the unpro-
cessed noisy speech, the OM-LSA with IMCRA, the MMSE-BC with a super-Gaussian
estimator and the proposed approach.

Noise SNR
(dB)

Method

Unprocessed OM-LSA MMSE-BC Proposed

white 0 1.57 2.05 2.07 2.45
5 2.10 2.80 2.72 3.03

10 2.65 3.35 3.21 3.54

F-16 0 2.20 2.91 2.66 3.09
5 2.72 3.43 3.29 3.55

10 3.29 4.04 3.82 4.11

HF channel 0 2.25 2.58 2.55 2.89
5 2.79 3.25 3.14 3.44

10 3.32 3.79 3.67 3.94

factory1 0 2.20 2.41 2.17 2.47
5 2.77 3.09 2.87 3.13

10 3.32 3.79 3.50 3.82

babble 0 2.51 2.46 1.98 2.52
5 3.07 3.13 2.70 3.14

10 3.63 3.82 3.48 3.83

pink 0 1.96 2.63 2.45 2.90
5 2.54 3.22 3.08 3.45

10 3.10 3.77 3.63 3.95

car interior 0 3.92 4.99 4.80 5.02
5 4.31 5.22 5.08 5.23

10 4.72 5.43 5.30 5.43

destroyer
operations

0 2.45 2.82 2.51 2.85
5 3.00 3.40 3.15 3.46

10 3.50 3.92 3.71 3.98

destroyer
engine

0 2.19 2.80 2.86 3.00
5 2.76 3.41 3.45 3.56

10 3.25 3.91 3.95 4.04

jet1 0 2.02 2.59 2.03 2.62
5 2.56 3.21 2.70 3.21

10 3.12 3.70 3.34 3.73

tank 0 2.62 3.25 3.05 3.37
5 3.15 3.84 3.61 3.92

10 3.65 4.43 4.22 4.46

military vehicle 0 3.32 3.92 3.72 3.95
5 3.78 4.34 4.19 4.37
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M-frame stretch of noise from each type of noise and repeat the
steps for feature extraction to calculate the feature vectors for
the M frames (M ¼ 15000). Let m and n denote two classes chosen
out of the given noise types, then the training data for class pair mn
consisting of 18-dimensional patterns and the corresponding class
labels z can be expressed as

Dmn ¼ fðri; ziÞ ri 2 R18; zi

�� 2 f�1;þ1gg2M

i¼1 ð17Þ

The decision function for noise class pair mn is defined by

f mnðrÞ ¼
X
ri2sv

amn
i ziKðri; rÞ þ bmn ð18Þ

where amn
i is from the solution of the quadratic programming prob-

lem, bmn represents the optimized bias, and K denotes the kernel
function [33], which is chosen to be the radial basis function
(RBF) in our approach. Since f mnðrÞ ¼ �f nmðrÞ, there are
12ð12� 1Þ=2 ¼ 66 different decision functions in this 12-class
problem.

For the classification of the ‘‘one-against-one’’ approach, the
most popular method is the voting strategy: each binary classifier
casts one vote for its preferred class, and the feature vector r is
designated to be in a class with the most votes. Thus the noise type
of the lth frame corresponding to r is given by

Cframe ¼ arg max
m¼1;2;���;12

X12

n–m;n¼1

sgnðf mnðrÞÞ ð19Þ
10 4.20 4.80 4.65 4.83

factory2 0 2.65 3.23 3.04 3.34
5 3.14 3.76 3.52 3.82

10 3.62 4.27 4.07 4.31

jet2 0 1.75 2.18 1.96 2.25
5 2.28 2.86 2.61 2.96

10 2.83 3.43 3.28 3.52
4.3. Noise classification of noisy speech

The noise type is judged during noise-only periods in the noisy
speech. The first N ¼ 15 frames in a segment of noisy speech are
assumed to be non-speech, and the noise classification is carried
out in these frames. Within the N frames, the number of frames
judged as type n is denoted by LðnÞ, and the noise type of the noisy
speech corresponds to the n maximizing LðnÞ, as following:

Csegment ¼ arg max
n¼1;2;...;12

LðnÞ ð20Þ

Fig. 2 gives an example of noise classification of noisy speech.
Fig. 2(a) illustrates the waveform of a segment of speech corrupted
by babble noise (N5) at 0 dB SNR, and the noise types of its first 15
frames are judged frame by frame as shown in Fig. 2(b). It is
obvious that only the noise in the 4th frame is judged to be N2
by mistake. As calculated using Eq. (20), the noise type of the noisy
speech segment is judged to be N5 accurately.

5. Speech enhancement based on noise classification

After the noise type is determined, we apply the optimal
parameter combination to the OM-LSA with IMCRA according to
the noise type by replacing the parameters as;ad and a with the
optimal parameters a�s ;a�d and a�. Firstly, the smoothing parameter
as in the two iterations of smoothing of noisy power spectrum (Eq.
(6)) is substituted with a�s . Secondly, the smoothing parameter in
the recursive averaging for noise PSD estimation (Eq. (3)) is calcu-
lated by using a�d instead of ad. Finally, by replacing the weighting
factor a with a� in the estimation of the a priori SNR (Eq. (9)), we
obtain the optimal parametric OM-LSA with IMCRA, using which
the noise is estimated and subsequently the enhanced speech is
calculated. Summing up the above steps, a speech enhancement
approach based on noise classification is achieved, whose proce-
dure is summarized in Fig. 3.
6. Performance evaluation

The performance evaluation of the proposed noise classifica-
tion-based speech enhancement approach consists of two parts:
(1) the accuracy of noise classification, and (2) the objective quality
of the speech enhanced using the proposed approach. In order to
evaluate the performance, 10 segments of clean speech which



Table 6
Results of composite measure for background intrusiveness (Cbak) obtained from the
unprocessed noisy speech, the OM-LSA with IMCRA, the MMSE-BC with a super-
Gaussian estimator and the proposed approach.

Noise SNR
(dB)

Method

Unprocessed OM-LSA MMSE-BC Proposed

white 0 1.66 2.16 2.09 2.33
5 2.04 2.64 2.57 2.74

10 2.46 3.06 2.98 3.15

F-16 0 1.56 2.34 2.16 2.43
5 1.99 2.76 2.66 2.80

10 2.47 3.28 3.16 3.30

HF channel 0 1.76 2.20 2.09 2.33
5 2.14 2.67 2.56 2.75

10 2.56 3.11 3.02 3.16

factory1 0 1.61 2.07 1.95 2.10
5 2.06 2.57 2.45 2.58

10 2.51 3.10 2.95 3.12

babble 0 1.68 1.96 1.69 2.00
5 2.16 2.44 2.22 2.46

10 2.65 3.00 2.83 3.01

pink 0 1.56 2.27 2.13 2.39
5 2.01 2.72 2.62 2.83

10 2.47 3.17 3.10 3.26

car interior 0 2.41 4.13 4.01 4.13
5 2.82 4.46 4.38 4.45

10 3.29 4.80 4.72 4.80

destroyer
operations

0 1.71 2.33 2.18 2.34
5 2.16 2.76 2.66 2.79

10 2.61 3.16 3.08 3.19

destroyer
engine

0 1.61 2.24 2.28 2.33
5 2.05 2.68 2.75 2.76

10 2.47 3.10 3.23 3.18

jet1 0 1.58 2.18 1.77 2.19
5 2.01 2.63 2.25 2.62

10 2.46 3.05 2.77 3.07

tank 0 1.76 2.59 2.48 2.65
5 2.21 3.06 2.93 3.09

10 2.66 3.57 3.48 3.57

military vehicle 0 2.08 2.94 2.88 2.96
5 2.50 3.30 3.28 3.30

10 2.93 3.75 3.71 3.77

factory2 0 1.73 2.52 2.42 2.57
5 2.17 2.99 2.85 3.01

10 2.61 3.44 3.36 3.46

jet2 0 1.58 2.12 1.95 2.15
5 2.00 2.58 2.42 2.62

10 2.46 3.02 2.94 3.08

Table 7
Results of composite measure for overall quality (Cov l) obtained from the unprocessed
noisy speech, the OM-LSA with IMCRA, the MMSE-BC with a super-Gaussian
estimator and the proposed approach.

Noise SNR
(dB)

Method

Unprocessed OM-LSA MMSE-BC Proposed

white 0 1.52 1.87 1.92 2.21
5 1.93 2.51 2.48 2.70

10 2.38 3.00 2.93 3.16

F-16 0 1.86 2.47 2.30 2.64
5 2.29 2.94 2.87 3.05

10 2.79 3.50 3.36 3.55

HF channel 0 1.88 2.16 2.16 2.43
5 2.31 2.76 2.69 2.92

10 2.75 3.26 3.18 3.37

factory1 0 1.84 2.10 1.94 2.15
5 2.33 2.68 2.54 2.71

10 2.81 3.29 3.08 3.32

babble 0 2.04 2.08 1.72 2.13
5 2.55 2.66 2.35 2.68

10 3.04 3.26 3.03 3.27

pink 0 1.69 2.27 2.17 2.51
5 2.18 2.80 2.73 2.99

10 2.68 3.29 3.23 3.45

car interior 0 3.42 4.42 4.27 4.43
5 3.82 4.64 4.54 4.65

10 4.23 4.84 4.74 4.85

destroyer
operations

0 2.04 2.45 2.25 2.48
5 2.53 2.97 2.82 3.01

10 2.98 3.42 3.30 3.46

destroyer
engine

0 1.87 2.34 2.46 2.52
5 2.33 2.87 2.99 3.00

10 2.75 3.34 3.45 3.46

jet1 0 1.71 2.22 1.79 2.24
5 2.17 2.76 2.37 2.77

10 2.64 3.21 2.93 3.24

tank 0 2.23 2.80 2.70 2.91
5 2.71 3.33 3.20 3.39

10 3.15 3.87 3.75 3.89

military vehicle 0 2.75 3.35 3.26 3.39
5 3.17 3.76 3.69 3.78

10 3.55 4.17 4.11 4.20

factory2 0 2.20 2.74 2.63 2.84
5 2.64 3.24 3.08 3.29

10 3.07 3.70 3.59 3.73

jet2 0 1.56 1.96 1.83 2.03
5 2.02 2.55 2.40 2.64

10 2.49 3.05 2.98 3.13
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are different from those mentioned above, are taken from the IEEE
sentences database [29]. They are half from a male speaker and
half from a female speaker, and denoted by ‘sp21’, ‘sp22’, . . .,
‘sp30’. The aforementioned various noise signals are added to them
in the same way as that in the previous section, and then another
10� 12� 3 segments of noisy speech are obtained. In addition, to
assess the robustness of the proposed approach in the case of noise
types out of the training set, we also evaluate the performance of
speech enhancement under open noise types such as the factory
floor noise 2 and jet cockpit noise 2, which are also from the
Noisex92 database but not part of the training set.

6.1. Performance of noise classification

To evaluate the performance of the proposed noise classifica-
tion method, we first investigate the classification accuracy for
the pure noise signals. With the exception of the training data,
the rest of the noise signals from the Noisex92 database are used
as the testing data. Fig. 4 illustrates an example of the classification
of the pure noise signals. By choosing a 1-s segment from each type
of noise in the testing data and concatenating them successively,
we obtain a 12-s noise segment as shown in Fig. 4(a). The noise
classification of the 12-s noise segment is illustrated in Fig. 4(b),
from which we can see that the proposed method results in high
accuracy of classification for all 12 types of noise, and only little
noise is classified mistakenly. The classification accuracy for the
whole testing data in percentage is shown in Table 3. For compar-
ison, the classification accuracy of the methods using the MFCC
features and the SVM classifier is also given in Table 3, in which
the 13, 26 and 39-dimensional MFCC features are computed using
the HTK [26]. It is obvious that the proposed noise classification
method (represented by BARK18) outperforms the methods using
the 13, 26 and 39-dimensional MFCC features (represented by
MFCC13, MFCC26 and MFCC39 respectively) for all types of noise
with the average accuracy of 98.85%.

Also, we investigate the classification accuracy for the noisy
speech. A total number of 30� 12� 3 segments of noisy speech
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Fig. 5. Example of speech enhancement using the OM-LSA with IMCRA, the MMSE-BC with a super-Gaussian estimator and the proposed approach: (a) Spectrogram of the
clean speech. (b) Spectrogram of the unprocessed noisy speech (degraded by 5 dB white noise). (c) Spectrogram of the enhanced speech using the OM-LSA with IMCRA.
(d) Spectrogram of the enhanced speech using the MMSE-BC with a super-Gaussian estimator. (e) Spectrogram of the enhanced speech using the proposed approach.
(f) Colormap used in the above spectrograms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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are used to examine the accuracy of the noise classification, and
the results in percentage for various noise types and levels are
shown in Table 4. It can be seen that all the noisy speech segments
are classified accurately for all the given noise conditions. Hence,
the proposed method is suitable for the noise classification of noisy
speech for speech enhancement.
6.2. Performance of speech enhancement

The speech enhancement performance of the proposed
approach is compared with that of the conventional OM-LSA with
IMCRA and the MMSE-BC with a super-Gaussian estimator from
[35] using objective measures. Three composite measures given
in [27] are used to evaluate the quality of the enhanced speech,
including the signal distortion Csig , background intrusiveness Cbak

and the aforementioned overall quality Cov l. The first two measures
are defined as

Csig ¼ 3:093� 1:029SLLR þ 0:603SPESQ � 0:009SWSS ð21Þ
Cbak ¼ 1:634þ 0:4785SPESQ � 0:007SWSS þ 0:063SsegSNR ð22Þ

where Csig rates the enhanced speech on the speech signal alone
using a five-point scale, Cbak rates the enhanced speech on the back-
ground noise alone using a five-point scale, and Covl rates the
enhanced speech on the overall effect using the scale of the Mean
Opinion Score (MOS) [27]. Also, SsegSNR represents the measurement
according to the segmental SNR.

The noisy speech segments corresponding to the clean speech
segments ‘sp21’ to ‘sp30’ are used as experimental data, and they
are processed using the conventional OM-LSA with IMCRA, the
MMSE-BC with a super-Gaussian estimator and the proposed
approach. The average Csig ;Cbak and Cov l of the enhanced speech
are calculated for each noise condition, the average measures of
the unprocessed noisy speech are also calculated as comparison.
Tables 5 and 6 present the results of the composite measures for
signal distortion and background intrusiveness, respectively. It is
obvious that the proposed approach outperforms the conventional
OM-LSA with IMCRA and the MMSE-BC with a super-Gaussian
estimator under all the tested conditions, which implies the pro-
posed approach’s superiority in preserving the speech component
and suppressing the background noise. The results of the compos-
ite measure for overall quality are shown in Table 7, from which
we can see that the proposed approach consistently yields a higher
improvement in the speech quality than the conventional OM-LSA
with IMCRA and the MMSE-BC with a super-Gaussian estimator.
Also, it can be seen that the same conclusion can be made for
two types of noise out of the training set, which implies the
proposed speech enhancement approach is not dependent on the
training set.

The comparison of speech enhancement performance among
the conventional OM-LSA with IMCRA, the MMSE-BC with a
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super-Gaussian estimator and the proposed approach for a seg-
ment of noisy speech is illustrated in Fig. 5. Fig. 5(a) shows the
spectrogram of the clean speech, and the spectrogram of Fig. 5(b)
presents the unprocessed noisy speech, which is degraded by
5 dB white noise. The spectrograms of the speech enhanced using
the conventional OM-LSA with IMCRA, the MMSE-BC with a
super-Gaussian estimator and the proposed approach are shown
in Fig. 5(c), (d) and (e), respectively. As can be seen, the proposed
approach has better noise suppression than the conventional
OM-LSA with IMCRA, and preserves more speech spectra. The
MMSE-BC with a super-Gaussian estimator obtains the best noise
suppression, but it preserves less speech spectra than the proposed
approach. Informal listening test confirms that the proposed
approach achieves higher quality of enhanced speech.

7. Conclusions

In this paper, we have proposed a speech enhancement
approach on the basis of noise classification, which comprises a
SVM-based noise classification method and an optimal parametric
OM-LSA speech estimator with IMCRA noise estimator. The noise
classification method proposed in this paper exploits the features
of noise energy distribution in the Bark domain and is imple-
mented using the SVM classifiers. Through the enhancement of
noisy speech samples, we obtain the optimal parameter combina-
tions for the OM-LSA with IMCRA under various noise environ-
ments, using which we improve the conventional speech
enhancement scheme based on the OM-LSA and the IMCRA to pro-
pose the optimal parametric OM-LSA with IMCRA for speech
enhancement.

Performance evaluation is implemented to the proposed noise
classification method and the noise classification-based speech
enhancement approach. Experimental results of the noise classifi-
cation show that the proposed method provides high classification
accuracy to both pure noise and noisy speech. For speech enhance-
ment, the results of the objective evaluation show that, compared
to the conventional OM-LSA with IMCRA and the MMSE-BC with a
super-Gaussian estimator, the proposed approach retains the
speech component better, suppresses the background noise more
effectively, and achieves the higher quality of enhanced speech.
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