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A B S T R A C T

This paper proposes a bilevel stochastic optimization model for generating the optimal joint demand and virtual
bidding strategy for a strategic retailer in the short-term electricity market, where virtual bidding is used to
improve the retailer's market power in the day-ahead (DA) electricity market. In the proposed model, virtual
bidding can be used at multiple buses, which are not limited to the locations of the demands of the strategic
retailer. In the bilevel stochastic optimization model, the upper level problem maximizes the total profit of
demand and virtual bidding, while the lower level problem represents the DA electricity market clearing process;
the uncertain demands of the strategic retailer and real-time (RT) electricity prices in the market are represented
by scenarios; and the Conditional Value at Risk (CVaR) is used for risk management. By using the duality theory,
Karush–Kuhn–Tucker (KKT) conditions and big M method, the proposed bilevel nonlinear optimization model is
converted into a single-level mixed-integer linear programming (MILP) problem, which can be solved efficiently
by existing commercial solvers. Case studies are performed to validate the proposed model and study the impacts
of various model parameters on the strategic retailer's joint demand and virtual bidding strategy.

1. Introduction

In the deregulated electricity markets, since most consumers do not
have the expertise on power trading, they may prefer to sign long-term
or mid-term bilateral contracts with the retailers to satisfy their power
demand. In this circumstance, the retailers act as the intermediaries
between consumers and electricity markets [1]. To manage the risk and
lower the energy procurement cost, the retailers would expect to de-
velop optimal demand side bidding strategies in which the uncertainties
could be handled by using the stochastic [2] or robust optimization [3]
technique. Since many retailers only have small shares in the electricity
markets, they can be treated as price-takers whose behavior would have
little influence on the electricity prices in the market [2–9]. However, if
there is one or multiple dominant retailers in the market whose bidding
strategies can affect the market outcomes significantly, they should be
modeled as price-makers [10–16].

In the existing literature, the optimal demand side bidding strategies
consider different market frameworks and physical assets to improve
the demand side participants’ economic benefits [2–16]. In [2], the
retailers could participate in the future and spot markets simulta-
neously to manage the uncertainties, where the competition of rival
retailers was also considered in the stochastic optimization model. The
authors of [7] proposed a new trading mechanism for short-term

demand response (DR) through which the retailer can receive short-
term DR offer curves submitted by the customers to avoid unfavorable
RT prices in the wholesale electricity markets. In [10], the retailers
could adjust their DA bidding strategies based on the latest forecast
results in several intraday markets in Spain, which are cleared after the
DA market. In [3, 12] and [13], the time-of-use rate, time-shiftable, and
coupon-based demand response programs were considered in the de-
mand bidding strategies, respectively. In [5], the financial impact of
demand response was quantified for the retailer. In [11], energy storage
was used by a strategic load serving entity to lower the energy pro-
curement cost through optimal charging and discharging strategies. The
authors of [14] compared three types of price elasticity of the demand
to show the benefits of using demand response. In [15] and [16], op-
timal demand side bidding strategies were proposed for strategic large
consumers in electricity markets, and the impact of demand bidding on
wind power integration was investigated in [16].

Even though there is abundant literature on developing demand
side bidding strategies, a pure financial instrument called virtual bid-
ding, which is designed based on the two-settlement structure of the US
electricity markets, has not been considered yet. Virtual bidding is
trading power in the DA and RT markets without generating or con-
suming it, and the profit of virtual bidding depends on the price dif-
ferences between DA and RT markets. Virtual bidding is different from
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generation or demand bidding of electricity market participants be-
cause it is not associated with any physical assets in the power grid. In
the DA market, a virtual bidder may either buy or sell power based on
its credit in the trading account, and all of its DA virtual power com-
mitments should be zero out in the RT market, because the virtual
bidder does not have any actual generation or demand sources. In
contrast, a retailer with demand bidding needs to purchase power in the
DA markets based on the consumers’ electricity consumptions, and a
power producer with generating bidding should sell power in the DA
market, which is limited by its installed generation capacity. In this
circumstance, the demand side participants in the electricity market,
such as the retailer, can use virtual bidding to improve their economic
benefits and decrease risks in the market without using additional
physical assets.

Virtual bidding was first adopted by the PJM electricity market in
2000 [11]. In 2013, the cleared virtual bids of the five major U.S.
wholesale electricity markets accounted for 13% of the total electric
demand [17]. The authors of [18] addressed the main advantages and

disadvantages of virtual bidding, and the impacts of virtual bidding on
the electricity market operation were studied by many researchers in
the academia and industry. The study of perfect virtual bidding in the
market clearing processes in [19] and [20] showed that virtual bidding
could improve market performance. Since virtual bidding was not in-
troduced to California and New York electricity markets from the be-
ginning, the authors of [21] and [22] could analyze the historical data
with and without virtual bidding, and the studies showed that virtual
bidding reduced price differences and increased market efficiency.
However, some literature also pointed out that virtual bidding might
not increase market efficiency in some conditions [23–28]. In [23], it
was shown that a virtual bidder might not improve electricity market
efficiency even though the virtual bidding was profitable, which was
caused by the complicated power system operation processes. In [24], it
was shown that if virtual bidders could not forecast prices accurately,
they might not increase the total social welfare of the electricity market
and should be screened out by the market operators. The authors of
[25] addressed that, when the power network was congested, the price

Nomenclature

Indices and Sets

i Index of the demands owned by the strategic retailer,
i ∈ {1, ⋅⋅⋅, I}.

v Index of the virtual units owned by the strategic retailer,
v ∈ {1, ⋅⋅⋅, V}.

j Index of the generating units, j ∈ {1, ⋅⋅⋅, J}.
l Index of demands owned by other retailers or consumers,

l ∈ {1, ⋅⋅⋅, L}.
t Index of time periods, t ∈ {1, ⋅⋅⋅, T}.
w Index of scenarios, w ∈ {1, ⋅⋅⋅, Ω}.
b Index of demand blocks of the strategic retailer, b ∈ {1,

⋅⋅⋅, B}.
q Index of energy blocks of a generating unit, q ∈ {1, ⋅⋅⋅, Q}.
e Index of demand blocks of other retailers or consumers

e ∈ {1, ⋅⋅⋅, E}.
n Index of system buses, n ∈ {1, ⋅⋅⋅, N}.
k Index of transmission lines, k ∈ {1, ⋅⋅⋅, K}.
r(k) Receiving-end bus of the transmission line k.
s(k) Sending-end bus of the transmission line k.

n
I Set of the demands owned by the strategic retailer located

at Bus n.
n
V Set of the virtual units located at Bus n.

n
J Set of the generating units located at Bus n.

n
L Set of the demands owned by other retailers or consumers

located at Bus n.
ϕn Set of the buses connected to Bus n

Decision variables

bit
SD Bid price of block b of the demand i owned by the strategic

retailer in a period t in the day-ahead (DA) market.
Dbit

SDmax Maximum power of block b of the demand i owned by the
strategic retailer in a period t in the DA market.

Dbit
SD Cleared power of block b of the demand i owned by the

strategic retailer in a period t in the DA market.
Pvt

VImax Maximum incremental bid capacity of the virtual unit v in
a time period t in the DA market.

Pvt
VDmax Maximum decremental bid capacity of the virtual unit v in

a time period t in the DA market.
vt
VD Bid price of the virtual unit v in a period t in the DA market

when a decremental bid is used.
zvt Binary variable for the virtual unit v in a time period t,

which is equal to 1 if an incremental bid is generated and

0 if a decremental bid is generated.
vt
VI Bid price of the virtual unit v in a period t in the DA market

when an incremental bid is used.
vt
VD Bid price of the virtual unit v in a period t in the DA market

when a decremental bid is used.
Pvt

VD Cleared power of the virtual unit v in a period t in the DA
market when a decremental bid is used.

Pvt
VI Cleared power of the virtual unit v in a period t in the DA

market when an incremental bid is used.
Pqjt

CD Cleared Power of the block q of the generating unit j in a
period t in the DA market.

Delt
OD Cleared power of the block e of the demand l of other

retailers or consumers in a period t in the DA market.
nt
DA DA locational marginal price (LMP) at Bus n in a period t.

fkt
D Power flow of the transmission line k in a period t in the

DA market.
nt
DA Voltage angle of Bus n in a period t in the DA market.

ζ Auxiliary variable used to compute the Conditional Value
at Risk (CVaR).

ηw Auxiliary variable used to compute the CVaR in Scenario
w.

Parameters

Ditw
SR Actual demand i of the strategic retailer in the real-time

(RT) market in a period t in Scenario w.
ntw
RT RT LMP at Bus n in a period t in Scenario w.

PVmax Maximum total capacity of the virtual units in the DA
market.

Dit
SF Forecasted demand i of the strategic retailer in a period t

in the RT market.
Pqjt

CDmax Maximum power of the block q of the generating unit J in
a period t in the DA market.

Delt
OD max Maximum power of the block e of the demand l of other

retailers or consumers in a period t in the DA market.
qjtw
CD Offer price of the block q of the generating unit J in a

period t in the DA market in Scenario w.
elt
OD Bid price of the block e of the demand l of other retailers or

consumers in a period t in the DA market.
πw Probability of occurrence of a scenario w.
Bk Imaginary part of the admittance of the line k.
Ck

max Transmission capacity of the line k.
λCapD Bid price cap of the DA market.
β Risk aversion parameter of the strategic retailer.
α CVaR per-unit confidence level.
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differences may not be reduced by virtual bidding. The work [26] and
[28] showed that if virtual bidding was used by financial transmission
right (FTR) holders and cyber attackers, respectively, it would bring
financial losses to the system. Moreover, the reference [27] reported
that the FTR holders using uneconomic virtual bidding violated the
Federal Energy Regulatory Commission's anti-manipulation rule and
should pay penalties to the market.

Even though an incentive for allowing virtual bidding in the elec-
tricity market is to increase power trading liquidity and mitigate market
power, currently, the overall virtual trading volume in the U.S. elec-
tricity market is still not high enough to make the market perfectly
competitive, because the participants using virtual bidding are limited
by their credits, forecast capability, and risk tolerance. Even though
virtual bidding is not related to any physical assets, the quantities of
virtual bids are limited by the credit in the trading account. In this
circumstance, the large firms with high credits can have more market
power than the small firms with low credits in the DA market. Thus, the
virtual bidding used by small firms cannot mitigate the market power.
Moreover, since electricity price is usually much more volatile than the
prices of other commodities, such as petroleum, natural gas, financial
assets, metals, and agricultural products [29], the electricity price
forecasts used for virtual bidding may not be accurate enough, leading
to high potential risks for the electricity market participants using
virtual bidding. Since most firms are risk-averse, they would be more
interested in participating in other less-risky commodity markets in-
stead of the electricity market. Thus, the virtual trading volume is much
lower than the total demand in the U.S. electricity market. Further-
more, when the transmission line(s) connected to a bus are congested,
even a small generation offer or demand bid can affect the electricity
price at the bus significantly. Therefore, when transmission congestion
occurs, a price-maker participant can use virtual bidding at the buses
with the electricity prices sensitive to virtual bids to further increase its
market power in the network-constrained electricity market.

In the existing literature, the virtual bidder was usually a pure fi-
nancial entity [17–25], an FTR holder [26,27], or a system attacker
[28]. However, the participants that own physical assets on the demand
side, such as retailers or consumers, or the supply side of the power grid
can also use virtual bidding to improve their profits and manage risks,
and these participants are referred to as physical participants [26].
Based on the annual reports of PJM [30], in 2016 and 2017, about
63.5% and 55.2% of the cleared virtual bids in the PJM electricity
market were from physical participants, respectively. In this circum-
stance, there is a need to develop efficient decision-making models for
physical participants, such as a strategic retailer using virtual bidding
while considering the uncertainties and risks in the network-con-
strained electricity markets. Therefore, this paper proposes a risk-con-
strained stochastic optimization model for generating the optimal joint
demand and virtual bidding strategies for a strategic retailer while
considering the impact of power congestion on the network-constrained
market clearing. The main contributions of this paper are the following:

1) A bilevel stochastic optimization model for generating the joint
demand and virtual bidding strategy is proposed for the first time.
The market power of a strategic retailer in the DA market is in-
creased by submitting incremental or decremental virtual bids at
multiple buses in the power system, which can be different from the
locations of the retailer's demands. The optimal joint demand power
and virtual bidding strategies are generated simultaneously con-
sidering the retailer's risk preference.

2) This is the first work of studying the virtual bidding used by a de-
mand side participant, i.e., a strategic retailer. The impacts of dif-
ferent maximum virtual bidding capacities, load levels, risk aversion
parameters, and other participants’ bidding strategies on the prof-
itability of the strategic retailer are studied to further understand
this type of virtual bidding used by demand side participants.

The remainder of this paper is organized as follows. Section 2 pre-
sents the problem description. Section 3 presents the model for gen-
erating the optimal joint demand and virtual bidding strategy for the
strategic retailer. Section 4 demonstrates the effectiveness of the pro-
posed model via case studies. Section 5 concludes the paper.

2. Problem description

2.1. Market framework

This paper addresses the short-term bidding problem of a strategic
retailer in a two-settlement electricity market, which is shown in Fig. 1.
On one hand, the retailer signs long-term or mid-term contracts with
consumers and purchases power from the electricity markets. On the
other hand, the retailer uses additional financial deposit as the credit to
perform virtual bidding, which helps it earn more profit and manage
risks.

The two-settlement electricity market usually has two trading
floors: DA and RT markets. In the DA market, all the demands and
virtual bids of the strategic retailer are cleared at DA prices through the
DA market clearing process, which considers the offers and bids of all
market participants. The total quantity of DA virtual bids should not
exceed the maximum virtual bidding capacity, which is equal to the
retailer's available credit divided by the reference price for virtual
bidding. The credit of the retailer is equal to its financial deposit in the
trading account, and the reference price for virtual bidding is specified
by the market operator based on the historical electricity price data and
is publicly available to all market participants. In the RT market, the
demand and virtual deviations of the strategic retailer are settled at RT
prices. Since the DA virtual bids were not based on actual generation or
demands in the power system, the strategic retailer's RT virtual devia-
tions are equal to its DA cleared virtual quantities, which are de-
terministic after the DA market clearing process. However, the strategic
retailer's RT demand deviations are uncertain and affected by the RT
behaviours of the end-use electricity consumers.

Fig. 1. Market structure for the strategic retailer using virtual bidding.
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2.2. Bilevel stochastic programming structure

The structure of the proposed bilevel stochastic optimization model
is depicted in Fig. 2. The uncertain parameters faced by the retailer are
represented by scenarios and the expected total profit of the demand
and virtual bidding of the retailer in the two-settlement electricity
market is maximized in the upper level problem. The DA market
clearing processes are modelled in the lower level problem, and the
total social welfare is maximized while considering the impacts of the
strategic retailer's demand and virtual bids on the DA prices. In this
paper, the strategic retailer is modeled as a price-maker in the DA
market, because it can submit the demand and virtual bids strategically
to affect the DA prices for maximizing its expected profits. Specifically,
the retailer has the flexibility to set the prices and quantities of the DA
demand bids, as well as the locations, types, quantities, and prices of
the DA virtual bids. In contrast, the RT power deviations of the retailer
are inelastic and have to be settled at the RT prices automatically,
which indicates that the retailer does not have the flexibility to behave
strategically in the RT trading floor. Therefore, the retailer's market
power in the RT market is much weaker than that of other participants
with flexible resources, and the retailer is modeled as a price-taker in
the RT market in the proposed model.

In the stochastic model depicted in Fig. 2, three types of un-
certainties, namely, the DA bidding strategies of other participants, the
RT electricity prices, and the demands of the strategic retailer, are re-
presented explicitly via scenarios. Additionally, as shown in Fig. 1,
there are many other uncertainties in the electricity markets, such as
the RT bidding strategies of other participants, weather conditions, and
power outage events in the power grid. Even though these additional
uncertainties are not represented explicitly in the model, they are re-
presented implicitly by the three types of uncertain parameters that are
considered explicitly in the model. For instance, RT prices are affected
by RT bidding strategies of other participants, renewable power pro-
ductions, and power outage events, and RT demands are significantly
affected weather conditions. In this circumstance, when the uncertain
RT prices and demands are represented via scenarios in the proposed
model, many other uncertainties are also taken into account implicitly.

In this paper, scenarios of uncertain parameters are generated by
using the Seasonal Autoregressive Integrated Moving Average
(SARIMA) model-based method, which is widely used for stochastic
decision-making problems in electricity markets [1]. To model the
uncertain parameters accurately, a large number of scenarios are
usually generated. This, however, may lead to a large-scale stochastic
optimization model that cannot be solved within the required time
frame. To reduce the computational burden, the fast forward scenario
reduction method [31] is used to reduce the scenario number while
preserving the statistical properties of the scenario sets as intact as
possible.

3. Model formulation and conversion

In this section, the detailed formulation of the proposed model are
provided in Sections 3.1 and 3.2, which is a bilevel nonlinear stochastic
optimization problem that cannot be solved directly by using any ex-
isting solver. To address this issue, the proposed bilevel nonlinear op-
timization model is converted to a single-level nonlinear mathematical
programming with equilibrium constraints (MPEC) problem in
Section 3.3. Then, the nonlinear terms of the MPEC problem are line-
arized in Section 3.4 so that the problem is further converted to a
single-level mixed integer linear programming (MILP) problem, which
can be solved efficiently using the commercial solvers.

3.1. Upper level problem

The upper level problem (1) maximizes the expected total profit of
the demand and virtual bidding in the two-settlement electricity market

and is expressed as follows:

D

D D

max (1 )
tw

w
ib
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bitw
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i
n i tw
RT

itw
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b
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n v tw
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n v tw
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vtw
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b i t
0

, ,
bit
SD CapD
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,
vt
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vt
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=
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,
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z
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,
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w
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Fig. 2. Structure of the proposed bilevel stochastic optimization model.
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where = P P{ , , , , , , , }bit
SD

vt
VI

vt
VD

vt
VImax

vt
VDmax

w
D is the set of

the decision variables of the bilevel optimization problem, and ΞD is the
decision variables existing in the lower level problem provided in
Section 3.2.

The objective function (1a) maximizes two terms: 1) the sum of the
negative energy purchasing costs and virtual bidding profits in the DA
and RT electricity markets multiplied by 1- β; 2) the CVaR multiplied by
β. Specifically, the term w w w

1
1 is the CVaR with a con-

fidence level αs (0 < αs < 1), and can be denoted as CVaR s. The value
of CVaR s is equal to the expected profit of the ×(1 ) 100%s least
profitable scenarios of the stochastic demand and virtual bidding
strategy. In the proposed model, the CVaR is calculated by using the
ancillary constraints (1j) and (1k), where ηw and ζ are ancillary vari-
ables. The detailed derivations for these formulations on the calculation
of the CVaR can be found in [32]. The weight β represents the risk
aversion parameter of the retailer, and a higher value of β indicates that
the strategic retailer is more risk averse. In (1a),

D P P, , , and
n i tw
DA

n v tw
DA

bitw
SD

vtw
VI

vtw
VD

( : ) ( : )n
I

n
V are the variables determined

in the lower level problem (2).
As shown in (1a), the strategic retailer's incremental or decremental

virtual bids tend to be submitted at the buses with positive and negative
price differences between DA and RT markets, respectively. In contrast,
the demand bids of the strategic retailer are decremental and tend to be
submitted at the buses with negative price differences between DA and
RT markets, because the power purchasing cost in the DA market is
decreased with the DA price.

Constraints (1b)-(1d) enforce the acceptable DA bidding prices of
the strategic retailer's demands and virtual units. Constraints (1e) and
(1f) limit the bidding quantities based on the forecasted demands and
the maximum capacity of the virtual units, respectively. Constraints
(1g)–(1i) indicate that either an incremental or a decremental virtual
bid can be submitted at each bus. Constraints (1j) and (1k) are used to
compute the CVaR, which is the retailer's expected profit of the

×a(1 ) 100% worst scenarios [32]. Constraint (1l) indicates that
problem (1) is subject to the lower level problem (2) in Section 3.2.

3.2. Lower level problem

The lower level problem (2) models the DA market clearing process
for each scenario w and is formulated as follows:
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the set of all decision variables of the problem (2), which includes both
primal and dual variables. The dual variables are given following the
colon in each constraint.

The objective function (2a) minimizes the total cost of the power
offered by the virtual and generating units minus the revenue of the
virtual units and demands in each scenario. The DA power balance
considering the incremental and decremental virtual bids at each bus is
provided in constraint (2b), and the power flow equation of each
transmission line is given in constraint (2c). Constraint (2d) imposes the
capacity limits of each transmission line. Constraint (2e)–(2i) limit the
cleared bidding capacities of the virtual and generating units and de-
mands. The voltage angle of each bus is limited in constraint (2j), and
the reference bus of the system is defined in Constraint (2k).

3.3. An equivalent single-level mathematical programming with equilibrium
constraints problem

The proposed bilevel optimization problem (1) and (2) can be
converted into an equivalent single-level mathematical programming
with equilibrium constraints (MPEC) problem through the KKT condi-
tions of the lower level problem (2), which are provided as follows:
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SD

bitw
SD min (3j)
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vtw
VD

vtw
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P µ v t w0 0 , ,vtw
VD

vtw
VD min (3n)
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qjtw
CD

qjtw
CDmax max

(3o)

P µ q j t w0 0, , , ,qjtw
CD

qjtw
CD min

(3p)
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OD

eltw
OD
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ODmax max (3q)

D D e l t w0 0, , , ,eltw
OD
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OD min (3r)

C f k t w0 ( ) 0 , ,k ktw
D

ktw
max max (3s)

+C f k t w0 ( ) 0 , ,k ktw
D
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max min (3t)

n t w0 ( ) 0 , ,ntw
DA

ntw
D max (3u)

+ n t w0 ( ) 0 , ,ntw
DA

ntw
D min (3v)

where the constraints (3a)-(3f) are the stationary conditions of the
lower level problem (2); the constraints (3g)–(3v) are the com-
plementarity conditions of (2).

3.4. Reformulate the MPEC as an mixed integer linear programming
problem

The objective function (1a) and the constraints (1b)–(1k) and (3)
form a nonlinear single-level MPEC problem, which has two kinds of
nonlinear terms that can be linearized as follows.

1) The term +D Pbi n i tw
DA

bitw
SD

v n v tw
DA

vtw
VI

v( : ) ( : )n
I

n
V

P
n v tw
DA

vtw
VD

( : )n
V in (1a) is bilinear and can be linearized as follows

according to (3a)–(3c), (3i)–(3n), and the strong duality theorem.

+

=

+ +
+ +
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+ +
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µ µ P
µ µ P

D P µ P

µ D
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( )
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( ) ( )

bi n i tw
DA

bitw
SD

v n v tw
DA

vtw
VI

vtw
VD

bi bitw
SD

bitw
SD

bit
SD

bitw
SD

v vtw
V ax

vtw
V in

vt
VI

vtw
VI
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el elt
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CD

qj qjtw
CD
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el eltw
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n ntw
D

ntw
D

( : ) ( : )

min max

Im Im

min max

max max
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max max min max min

n
I

n
V

(4)

2) The MPEC model includes nonlinear complementarity constraints
(3g)–(3v). According to [33], a complementarity constraint in the
form of 0 ≤ P⊥Q≥ 0 can be replaced by the following formulation:

P Q P µM Q µ M µ0, 0; ; 0 (1 ) ; {0, 1}

where M is a sufficiently large constant.
Therefore, the MPEC problem is transferred into a single-level MILP

problem, which can be solved efficiently by using existing commercial
solvers.

4. Case studies and results

4.1. Simulation setup

To verify the effectiveness of the proposed model, the six-bus test
system provided in [34] is used to perform illustrative case studies in
Section 4.2–4.5, and the IEEE 118-bus system is used in Section 4.6 to
further verify the proposed model's applicability for a large system
[11]. The historical demand data of the retailer and RT electricity prices
are obtained from the PJM electricity market website [35]. It is as-
sumed that virtual bidding can be used at all buses of the systems and
all of the virtual units are owned by the strategic retailer. Five hundred
scenarios are first generated for each uncertain parameter based on the
SARIMA model and then are reduced to eight. The uncertainties of
other participants’ DA bidding prices are only modelled and studied in
4.5, but are not considered in the other sections for simplicity. The
proposed MILP model is solved by using Yalmip [36] and Gurobi 7.0 in
MATLAB [37]. The computer used for simulation studies has a 3.50-
Ghz, 4- core CPU and a 32-GB RAM.

4.2. Results of risk-neutral joint demand and virtual bidding strategy

The six-bus test system used in this section is shown in Fig. 3 [34].
The system has 8 generating units and 4 aggregated demands. D1 at Bus
3 is assumed to be the demand of the strategic retailer. D2-D4 are the
demands of other retailers or consumers, and their bid data are ob-
tained from [34]. P1-P8 are conventional generating units whose offer
data are provided in Table 1.

By setting the risk aversion degree β to be zero, the bilevel nonlinear
optimization problem (1) and (2) is converted into a single-level MILP
problem, which is solved to obtain the strategic retailer's risk-neutral
joint demand and virtual bidding strategy for a typical day. In this
study, the maximum virtual capacity is set to be 60 MW. The price
differences between the DA and RT markets at the six buses over 24 h of
the day are shown in Fig. 4. The incremental and decremental virtual
bidding capacities at the six buses are provided in Fig. 5. The results
show that the location and type of virtual bids depend on the properties
of price differences between DA and RT markets. Most of the incre-
mental virtual bids are used at Bus 4 because it has the largest positive
price differences during all of the 24 h. In contrast, most of the decre-
mental virtual bids are used at Bus 2 because it has the largest negative
price differences in some hours.

Fig. 6 shows the RT demands of the strategic retailer and the DA and
RT electricity prices at Bus 3 where the strategic retailer's demands are
located. Fig. 7 shows the expected profits of the strategic retailer over
24 h, where the profit of demand bidding is negative because the de-
mand bidding is purchasing power in the electricity market. Therefore,
the absolute value of the negative profit is equal to the cost of pur-
chasing power for the strategic retailer's RT demands, which increases

Fig. 3. The six bus test system.
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with the RT demand and the electricity price at Bus 3. As shown in
Figs. 4 and 7, the profit of virtual bidding depends on the price dif-
ferences when the maximum virtual capacity is fixed. The highest profit
of virtual bidding occurs in the 4th hour in which the price difference
has the largest absolute value at Bus 4. The profits of virtual bidding
from the 8th to the 12th hour are much lower than that in the 4th hour,
because the absolute price differences in those hours are much smaller
than that in the 4th hour.

4.3. Impacts of maximum virtual capacities and load levels

In this study, different maximum virtual bidding capacities and load
levels are used in the risk-neutral bidding problem to analyze their
impacts on the profitability of the strategic retailer. The maximum
virtual bidding capacity is changed from 0 to 280 MW with an incre-
ment of 40 MW. The strategic retailer's RT demands is multiplied by a

load level coefficient, which is changed from 0.2 to 3.2 with an incre-
ment of 0.4. As shown in Fig. 6, the original peak demand of the stra-
tegic retailer is 84.8 MW, which occurs in the 16th hour of the day.
Therefore, when the load level coefficient is increased from 0.2 to 3.2,
the peak demand of the strategic retailer is increased from 17 MW to
255 MW.

Fig. 8 shows that the expected total profit of the strategic retailer
increases with the maximum virtual bidding capacity but decreases
with the load level coefficient. When the maximum virtual bidding
capacity is very large or the load level is very small, the profit of virtual
bidding can cover the cost of buying power for the strategic retailer's RT
demands, thus making the total profit positive. Additionally, the rate of

Table 1
Data for the conventional generating units.

Unit # P1 P2 P3 P4 P5 P6 P7 P8

P j
CDmax
1 (MW) 25 15.8 15 140 2.4 68.9 76 54.3

P j
CDmax
2 (MW) 25 0.2 15 97.5 3.4 49.3 15.2 38.8

P j
CDmax
3 (MW) 20 3.8 10 52.5 3.6 39.4 22.8 31

P j
CDmax
4 (MW) 20 0.2 10 70 2.4 39.4 15.2 31

j
CD
1 ($/MWh) 31.6 18.9 0 32.6 39.8 17.1 19.5 16.9

j
CD
2 ($/MWh) 34.1 19.4 0 34.5 40.4 18.1 20.3 17.4

j
CD
3 ($/MWh) 36.8 27.3 0 36.1 45.6 18.9 23.6 18.2

j
CD
4 ($/MWh) 38.6 27.6 0 37.6 51.7 19.9 27.1 19.1

Fig. 4. Differences of DA and RT electricity prices at the six buses over 24 h of
one day.

Fig. 5. (a) Incremental and (b) decremental virtual bidding capacities at the six buses in 24 h of one day.

Fig. 6. RT demands of the strategic retailer and DA and RT electricity prices at
Bus 3 of a day.

Fig. 7. Expected profits of the strategic retailer over 24 h of a day.
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increase of the total profit with respect to the virtual bidding capacity is
different when the virtual capacity is in different ranges. For instance,
when the peak demand is 255 MW and the virtual bidding capacity is
increased from 40 to 80 MW, the total profit is increased by $14,544.
However, when the virtual bidding capacity is increased from 240 MW
to 280 MW, the total profit is only increased by $6240. This is because
that the price differences between the DA and RT markets are smaller
when the maximum virtual bidding capacity is between 240 MW and
280 MW. In this circumstance, it may not be beneficial for the strategic
retailer to further increase its virtual bidding capacity due to the need
for increasing the credit.

4.4. Impact of risk management

In this study, the risk aversion parameter β in the proposed opti-
mization model is changed from 0 to 0.9 with an increment of 0.1 to
study its impact on the expected profit and CVaR of the strategic re-
tailer; and the number of scenarios of the uncertain parameters is still
the same as that in Section 4.2. The maximum virtual bidding capacity
is set to be 0, 60, 120, and 180 MW. The simulation results of the ex-
pected total profit and CVaR versus risk aversion degree β at different
maximum virtual bidding capacities are shown in Figs. 9 and 10, re-
spectively.

When β increases, the expected total profit and CVaR decreases and
increases, respectively. This means that a larger risk aversion degree
leads to a less expected total profit but a smaller risk. When β is changed
from 0 to 0.1, the expected total profit only decreases slightly by about
0.87%, 1.56%, 0.19%, and 0.76% at the four different maximum virtual
bidding capacities, respectively, but the CVaR increases significantly by
about 69.19%, 56.05%, 71.74%, and 82.29%, respectively. The results
show that compared with the risk-neutral bidding strategy, a small risk
aversion parameter can significantly improve the expected profit of the
worst scenarios while only decreasing the expected total profit slightly.
However, when β is larger than 0.1, further increasing its value can only
improve the CVaR slightly. These results indicate that choosing β to be
0.1 would be the best tradeoff of the joint demand and virtual bidding
for the strategic retailer.

The simulation results in Figs. 9 and 10 also show that, although
virtual bidding can improve both the expected profit and the CVaR, the
improvement tends to decrease with the increase of the maximum
virtual bidding capacity due to the reductions of the DA and RT price
difference and the increased virtual bids cleared in the DA market. For
instance, when the risk aversion degree is 0.1 and the maximum virtual
capacity is increased from 0 to 60 MW, the expected profit and CVaR
are increased by $28,919 and $22,632, respectively, the largest

absolute DA and RT price difference of the 6 buses is decreased from
22.06$/MWh to 20.31$/MWh, and the total cleared virtual bid is in-
creased from 0 MWh to 1431 MWh. However, when the maximum
virtual capacity is increased from 120 MW to 180 MW, the expected
profit and CVaR are only increased by $18,096 and $8787, respectively,
the largest absolute price difference of the 6 buses is decreased from
19.85$/MWh to 18.64$/MWh, and the total cleared virtual bid is only
increased by 1084 MWh from 2757 MWh to 3841 MWh.

4.5. Impact of other participants’ uncertain bidding strategies

In this section, the impact of the uncertainties of other participants’
bidding strategies in the proposed model is studied. When the DA
bidding prices of P1-P8 cannot be forecasted accurately, they need to be
represented using scenario sets instead of deterministic values.
Specifically, the DA bidding price of the power producer j in the time
period t is assumed to follow a normal distribution N( , )tj

CD
tj
2 , where

tj
CD is the deterministic value provided in Table 1 and the standard

variance σjt is used to characterize the volatility of the forecast errors of
other participants’ bidding prices.

Fig. 11 shows the results of the total expected profit and CVaR of the
strategic retailer when the standard variance of other participants’
bidding price forecast errors is increased from 0$2/MWh2to 5$2/MWh2.
A larger standard variance indicates that it is more difficult for the
retailer to forecast other participants’ bidding prices and their scenarios
generated by the normal distribution are more volatile. When the value
of standard variance is increased from 0$2/MWh2 to 5$2/MWh2, the
total expected profit and CVaR decrease by about $1192 and $5235,
respectively. Therefore, the increased uncertainties of other market
participants lead to a decrease of the expected profit and an increase of
the risk of the strategic retailer. Additionally, the CVaR is more sensi-
tive to the bidding price forecast errors than the total expected profit,
which indicates that the expected profits of the worst scenarios are
affected more significantly by the uncertainties of other market parti-
cipants’ bidding strategies.

4.6. Results of IEEE 118-bus system

In this section, the IEEE 118-bus system is used to further verify the
applicability of the proposed model for a larger system [11]. The data of
the power producers’ DA generation offers and transmission capacities
are provided in [11]. The maximum virtual capacity is set to be 400
MW. The demand data of D1-D4 in Section 4.2 are multiplied by 3 and
used in this system. D1 is assumed to be located at Bus 1; while D2, D3,
and D4 are distributed evenly at Buses 15–19, Buses 41–45, and Buses
71–75, respectively.

The risk-neutral demand and virtual bidding strategies of the

Fig. 8. The expected total profit of the strategic retailer vs. the maximum vir-
tual bidding capacity and load level coefficient.

Fig. 9. Impacts of the risk aversion degree on the expected total profit at dif-
ferent maximum virtual capacities.
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strategic retailer are firstly generated. The computation time of solving
the optimization problem is about 467.4 s. The price differences be-
tween DA and RT markets for different time periods and buses are
shown in Fig. 12. The generated DA bidding quantiles, prices, and lo-
cations of the strategic retailer using virtual bidding are given in
Table 2.

As shown in Fig. 12 and Table 2, the generated demand and virtual
bids are related to the spatial temporal price differences between DA
and RT markets, which has been discussed in Section 4.1. For instance,
incremental virtual bids are submitted at Bus 35 in 20 out of 24 h of the
day, because in those hours the expected hourly price differences be-
tween DA and RT markets at Bus 35 are in the range of 23.6 − 30.3
$/MWh, which are positive. In the 16th hour of the day, decremental
virtual bids are submitted at Bus 3 and Bus 23, where the expected
hourly price differences between DA and RT markets are negative va-
lues of −24.5 $/MWh and −24.2 $/MWh, respectively. Since virtual
bidding can be used at all of the buses but the total quantity of virtual
bids is limited by the credit in the strategic retailer's trading account,
the virtual bids are only submitted at 6 buses of the IEEE 118-bus power
system with largest DA and RT price differences, meaning that the
quantities of the virtual bids at most of the 118 buses are zero. In
contrast, the demand bidding of the strategic retailer can only be used
at Bus 1. As long as the DA price is lower than the RT price at Bus 1, the
strategic retailer would prefer to submit DA demand bids at Bus 1 to
purchase power at a lower price in the DA electricity market.

Additionally, the total expected profit and CVaR of the strategic
retailer are obtained when the risk-aversion parameter is increased
from 0 to 1 with an increment of 0.1, and the results are provided in

Fig. 13. It is shown that the strategic retailer's total expected profit and
CVaR are decreased and increased with the increase of the risk-aversion
parameter, respectively, which indicates that the retailer using virtual
bidding can effectively manage the potential risks in the markets based
on its risk preference.

5. Conclusion

This paper proposed a bilevel stochastic optimization model for
generating the optimal joint demand and virtual bidding strategy for a
strategic retailer in short-term electricity markets. In the proposed
model, virtual bidding is used to improve the strategic retailer's market
power in the DA market by trading at multiple buses; and the uncertain
RT demands of the strategic retailer and RT electricity prices in the
market are represented by using scenarios. The proposed bilevel model
was converted into a single-level MILP problem using the duality
theory, KKT condition and big M method. By solving the single-level
MILP problem using an existing solver, the optimal DA demand and
virtual bidding strategies were generated simultaneously.

Case studies were carried out for a strategic retailer with virtual
bidding in a six-bus test system and the IEEE 118-bus system, respec-
tively. The results showed that the virtual bidding could improve the
profitability and decrease the risk of the strategic retailer due to its
increased trading volume in the DA and RT markets. The impacts of
different load levels, maximum virtual bidding capacities, risk aversion
parameter, and bidding prices of other market participants on the
strategic retailer's profit and risk were studied, and the results showed
that these factors could affect the retailer's joint demand and virtual
bidding strategy significantly.

In the future research, the potential collusions between multiple
strategic players can be considered in the model for generating the
bidding strategies. In this circumstance, the demand and virtual bids
can be submitted by different market participants with cooperation,
and their utility functions with different risk preferences should be
taken into account simultaneously. Moreover, the profit allocation
mechanism for multiple strategic market players also needs to be in-
vestigated in detail. Additionally, if the RT power trading volume of
some electricity market is limited and the retailer has flexible resources
in the RT market, it is also reasonable to consider the retailer using
virtual bidding as a price-maker in the RT market, by which the impacts
of the retailer's market power on the RT electricity prices can be
modelled and studied in detail.

Fig 10. Impacts of the risk aversion degree on the CVaR at different maximum
virtual capacities.

Fig. 11. Impact of other participants’ bidding price forecast errors on the total
expected profit and CVaR of the strategic retailer.

Fig. 12. Expected price differences between DA and RT markets of the IEEE
118-bus system.
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