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An Evaluation of the HVAC Load Potential for
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Abstract—This paper investigates the potential of providing
intra-hour load balancing services using aggregated heating, ven-
tilating, and air-conditioning (HVAC) loads. A directload control
algorithm is presented. A temperature-priority-list method is used
to dispatch the HVAC loads optimally to maintain customer-de-
sired indoor temperatures and load diversity. Realistic intra-hour
load balancing signals are used to evaluate the operational char-
acteristics of the HVAC load under different outdoor temperature
profiles and different indoor temperature settings. The number of
HVAC units needed is also investigated. Modeling results suggest
that the number of HVAC units needed to provide a -MW
load balancing service 24 hours a day varies significantly with
baseline settings, high and low temperature settings, and outdoor
temperatures. The results demonstrate that the intra-hour load
balancing service provided by HVAC loads meets the performance
requirements and can become a major source of revenue for
load-serving entities where the two-way communication smart
grid infrastructure enables direct load control over the HVAC
loads.

Index Terms—Air conditioning, ancillary service, demand re-
sponse, direct load control, HVAC, load balancing, load following,
regulation service, renewable integration, smart grid, thermostat-
ically controlled appliances.

I. INTRODUCTION

M ORE THAN 10 000MW of new wind power was added
to the U.S. electrical grid in 2009, almost 40% of the

grid’s newly installed capacity [1]. Many studies have exam-
ined the technical feasibility of and issues related to using wind
energy to generate 20% of the nation’s electricity by 2030 [2],
[3].A major operational issue identified is that both the ramp-
rate and magnitude of the regulation and load following require-
ment are expected to increase significantly. Inmeeting increased
ramp and capacity requirements, the regulating generators may
be unable to operate close to their preferred operating points, re-
sulting in lower efficiencies. Faster regulating movements also
increase mechanical stress on these generators, shortening their
lifetimes and increasing the wear-and-tear cost.
Pumped-hydro power plants, batteries, flywheels, distributed

generation resources, and demand-side management (DSM) are
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flexible energy options that could provide the needed fast-re-
sponse ancillary services [4], [5]. Of these options, DSM is the
least studied and most underutilized. Since 2006, markets for
regulation service fromDSMprograms have opened in Pennsyl-
vania, New Jersey, the Maryland Interconnection, and the PJM
Interconnection LLC (PJM), but because of the strict telemetry
requirement, all the participants of these programs have been
large industrial customers [6].
However, the deployment of the smart grid will enable com-

munication and control between buildings and utility control
centers. Therefore, this paper demonstrates that thermostatically
controlled appliances (TCAs) can provide load balancing ca-
pacity when aggregated, which may enable small residential or
commercial customers to participate in ancillary service mar-
kets in the future. The TCAs include residential heating, ven-
tilation, and air-conditioning (HVAC) systems; electric water
heaters; and refrigerators.
There are two control methods in DSM: indirect load con-

trol and direct load control. In indirect load control, the power
consumption of loads is controlled manually by the customers
or automatically by the appliances, with consideration given to
information such as real-time electricity tariffs and frequency
deviation in power systems. For example, the set point control
of TCAs according to the real-time electricity tariff affects end
users less than load shedding. However, the relationship be-
tween varying numbers of the external parameters (e.g., elec-
tricity tariffs) and power consumption is very complicated. Not
only is the relationship nonlinear, but the power consumption
may oscillate because of the lack of load diversity after the con-
trol is initiated [7].
In direct load control [8]–[11], the power consumption of

loads is controlled directly by a utility or a system operator, re-
gardless of the customers’ preference. It is easy to adjust the
demand precisely, but it is hard to gain customer acceptance if
their comfort settings are compromised. Therefore, strong finan-
cial incentives must be provided. Regulation and load following
services are both high value ancillary services compared to peak
shaving and load shifting, but the control objects must be avail-
able, controllable, and observable. Thus, direct load control has
been selected in this study to demonstrate the applications of
providing regulation and load following services using TCAs.
Suitable aggregated TCAs for regulation application: a) are

frequently in operation because regulation is required at all
times; b) have a high capacity to obtain an appreciable response
with few appliances; and c) have broad temperature setting
ranges because a short-term temperature-setting violation may
be necessary to maintain the quality of service. Therefore,
electric water heaters (EWHs) and HVAC loads are selected
for evaluation. A study of the direct control of EWHs to adjust
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Fig. 1. Thermal behavior of an HVAC unit.

their power consumption to follow regulation signals has been
published in Kondoh [12]. This paper presents the direct control
of HVAC units to follow the regulation and load following
signals. Although both EWHs and HVAC units store thermal
energy, EWH energy consumption is governed frequently by
random hot water consumption, while HVAC consumption
is governed by ambient temperature changes. Therefore, the
thermal dynamics of the HVAC unit must be modeled properly
to simulate the unit’s electricity consumption when responding
to ancillary service signals under the restriction to minimize end
user discomfort, considering the outdoor temperature changes.
Callaway proposes a system identification approach based

on Fokker-Planck diffusion models to design a direct control
strategy to manage large populations of HVAC units [13]. An
extended optimal centralized control strategy with comfort-con-
straints is proposed by Parkinson et al. [14]; Wang implemented
this method on a simulation test bed to investigate the regu-
lation and load shifting service supported by HVAC units to
offset the intermittency of renewable resources in a self-regu-
lating distribution system [15]. The identification computation
burden for large-scale aggregated power dynamics needs to be
solved by a suitable improvement for this approach. The temper-
ature priority list method introduced in this paper applied a sim-
plified HVAC model at the central controller to forecast room
temperatures on a per-minute basis and correct the forecasts
using measured room temperatures every 15 min. The commu-
nication and computation burdens are therefore greatly reduced.
Simulation results showed that the load balancing services pro-
vided are satisfactory and customer comfort is not compromised
significantly.
This paper presents the simplified HVAC model in Section II

and introduces the control algorithm for providing ancillary
services in Section III. The modeling results are discussed in
Section IV. The conclusions and future work are summarized
in Section V.

II. MODELING METHODOLOGIES

To model the electricity consumption of an HVAC unit, it is
critical to model the unit’s heat transfer process (as shown in

Fig. 2. ETP model of a residential HVAC unit.

Fig. 1), considering ambient temperature changes. This section
introduces the thermal dynamic equations.

A. Thermal Dynamics Models of an HVAC Unit

A simplified equivalent thermal parameters (ETP) model
[16]of a residential HVAC unit is shown in Fig. 2. Simplified
modeling is well-suited for simulating residential and small
commercial buildings. However, it may be unsuitable for
large commercial buildings with multizone central heating and
cooling systems.

air heat capacity ( or );

mass heat capacity ( or );

heat rate for HVAC unit ( or );

standby heat loss coefficient ( or
);

;

;

ambient temperature ( or );

air temperature inside the house ( or );

mass temperature inside the house ( or ).

A state space description of the ETP model is

(1)

The space heating unit model can be simplified further by
considering an equivalent model that matches the measured
turn-on time, , and turn-off time, , under a range of
ambient temperatures, . When the heater is turned off, the
room temperature, , at time is described by

(2)
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Fig. 3. Space heating unit behavior modeled by the simplified model and tuned
by measurements.

When the heater is turned on, the room temperature at time
is described by

(3)

room temperature ;

equivalent heat capacity ;

equivalent thermal resistance ;

equivalent heat rate (W);

time (minute);

time step (1 minute);

ambient temperature .

Note that parameters, , , and are curve fitting parame-
ters that fit the performance curve produced by the precise phys-
ical model represented by (1) or by measurements. Because the
room temperature variation is controlled within a narrow tem-
perature band of 2–4 , the simplifiedmodel produces satisfac-
tory results and significantly simplifies the forecasting process
required to create the temperature priority list for a large number
of HVAC units in seconds. Fig. 3 also shows how the forecasted
room temperatures are tuned by measurements every 15 min.
Six temperature profiles with daily average temperatures,
, ranging from to , are used to model

different weather conditions, as shown in Fig. 4. Customer
thermostat settings, , are set at . Temperature
deadbands are set to or for comparison, where

.The mean values of , , and are set
to , , and 400 W, respectively. The
, , and parameters for the HVAC units are randomized for

different HVAC units to create load diversity. An initialization
process sets the initial room temperature and randomizes the on
and off status of each HVAC unit for a few hours. An example
of the initialization process is shown in Fig. 5.

B. Construction of the HVAC Baseline Output

An aggregated baseline output of the HVAC units, ,
must be provided to grid operators so that deviations from the
baseline output can bemeasured as load balancing services (e.g.,
regulation up and regulation down services).

Fig. 4. Outdoor temperature profiles.

Fig. 5. HVAC initialization process .

Fig. 6. Construction of HVAC baseline loads using six sets of outdoor temper-
ature profiles (temperature profiles: ).

To create a baseline load, all participating HVAC units are
modeled in an uncontrolled mode using next-day outdoor tem-
perature forecasts. The uncontrolled model means that HVAC
thermostats turn the HVAC units on and off. The aggregated
HVAC power output (black lines in Fig. 6) are averaged to an
hourly load profile as the day-ahead (red lines in Fig. 6). Note
that the baseline load profiles vary with different thermostat set-
tings and different numbers of controlled HVAC units, as illus-
trated in Figs. 7 and 8. In general, more HVAC units and wider
deadband settings provide greater load balancing capacity.

C. Construction of the Control Signal

Realistic intrahour load balancing signals are used to evaluate
the performance of the aggregated HVAC load for ancillary ser-
vices. Two types of load balancing signals [3] are used: the area
control error (ACE) signal, , and load following signal,
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Fig. 7. Construction of hourly HVAC baseline loads using different tempera-
ture deadbands ( ; 1000 HVAC units).

Fig. 8. Construction of hourly HVAC baseline loads using different number of
HVAC units .

Fig. 9. Construction of control signals ( , 1000 HVAC units).

. Both are scaled to 1-min signals normalized to , ,
and for a baseline load constructed by 1000 controlled
HVAC units when varies from to to model
performance under different weather conditions. Note that ACE
signals are similar to regulation signals and vary much faster
than the load following signals.
The control signals, and , are calculated as

(4)

(5)

Examples of load following and ACE control signals are
shown in Fig. 9.

Fig. 10. Flow chart of HVAC control logic.

III. CONTROL ALGORITHMS

A flow chart of the direct load control logic is provided in
Fig. 10.
HVAC units are divided into two groups based on their on/off

status. Because space heating units are used in this paper for
demonstration purposes, the units in the “on” group are priori-
tized in descending order based on their room temperatures, i.e.,
if the room temperature is closer to the upper thermostat setting
, the unit is at the top of the queue to be turned off. The units

in the “off” group are prioritized in ascending order based on
their room temperatures, i.e., if the roomtemperature is closer
to the lower thermostat setting , the unit is at the top of the
queue to be turned on. The HVAC units that are “on” under di-
rect load control will switch off immediately when they receive
an “off” signal from the central controller, and vice versa.
The central controller is equipped with a forecaster to esti-

mate the room temperature for the next time step, determine
the on/off status of the HVAC units, and create two priority
(turn-on and turn-off) lists for the two groups of HVAC units.
The forecasting, ,can be tuned based on actual measure-
ment, , collected from HVAC units every 10 minutes or
every few hours to correct .
This forecast-and-update process will reduce the amount

of data traffic from each controlled HVAC unit to the central
controller. Note that the impact of the update-by-measure-
ment process will be presented in our follow-on paper; this
paper presents the simulation results assuming that the central
controller receives perfect room temperature forecasts. This as-
sumption is made to obtain the maximum capacity and quality
of the HVAC load when the central controller has precise in-
formation and control of each HVAC unit. A number of factors
can limit the capacity or reduce the quality of the balancing
capabilities provided by the HVAC load. For example, to avoid
stalling, when an HVAC unit is turned off, a minimum turn-off
time, , needs to be considered in the HVAC unit model so
that during the minimum turn-off period, the HVAC unit is
locked out for the “turn-on” service, reducing the balancing
capacity. In addition, the impact of random communication
delays and turn-on and turn-off delays may influence how well
the HVAC load can follow the control signal. Because of the
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Fig. 11. Different load following signals.

space limitations, those factors will be discussed in a follow-on
paper.

IV. MODELING RESULTS

Two sets of control signals are studied: load following and
ACE signals.

A. Response to Load Following Signals

The load following signal was normalized to 0.2, 0.6, and
1 MW, as shown in Fig. 11.
1000 HVAC units (rated at 6 kW) were used; thermostat high

limit, , is with a deadband of 2 or . Therefore,
thermostat low limits are or . Outdoor temperature
profile is picked from , 0, and .
The following observations are made from simulation results:
• The HVAC load follows the control signals very well for a
deadband of .

• The number of cycles of a heater unit ( ; dead-
band is ) is around 14–20 (see blue line in Fig. 12). To
provide the 0.2–1 MW load following service, there will
be two more cycles on average for each HVAC unit, with
deadbands set at .

• When the deadband is narrower, the capability of the
HVAC load to follow the load following signal is reduced
because tracking the control signals will partially synchro-
nize diversified HVAC loads, as shown in Figs. 13, 14, and
17. When of all households is close to or ,
the continuing “on” or “off” status of the HVAC units will
cause to exceed or , as shown at 420 minutes
in Subplot 3, Fig. 14 . The occurrence of
the violation can be minimized by increasing the number
of HVAC units, increasing , or decreasing .

• If the deadband is , the HVAC unit cycles two to four
times more often to follow the control signals (see Fig. 15),
shortening the life of the unit.

• When outdoor temperatures are high, the HVAC unit may
be unable to provide enough load following capacity be-
cause its base load may be lower than the required load fol-
lowing down capacity (see the case in Fig. 16). Note
that the indoor temperatures in all cases (see Fig. 17) are
always kept within their high and low limits; the central-
ized-dispatch algorithm simply changes the cycle length of
each HVAC unit to obtain an aggregated load profile that
matches the control signal.

Fig. 12. Impact of different control signal magnitudes on HVAC daily cycles.

Fig. 13. Impact of different control signal magnitudes on room temperature
profiles.

Fig. 14. Impact of different deadbands on room temperature profiles.

B. Response to ACE Signals

ACE signals were downloaded from the PJM website [17].
Note that ACE signals vary much faster than load following
signals, as shown in Fig. 9. To make the ACE cases comparable
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Fig. 15. Impact of deadbands on HVAC daily cycles.

Fig. 16. Impact of outdoor temperatures on control signal following
capabilities.

Fig. 17. Impact of outdoor temperatures on room temperature profiles.

to the load following cases, the ACE signal was also normalized
to 0.2, 0.6, and 1 MW, respectively; 1000 HVAC units were
used; is with a deadband of or . Outdoor
temperature profile is picked from , 0, and .
The following observations are made from simulation results:
• Following fast varying signals would be problematic for
bulk regulating units such as hydro power plants and bulk
energy storage devices because of ramping constraints.
However, because the basic control unit of an aggregated
TCA load is a 4- to 6-kW unit, the increases in daily cycles
in the ACE following cases are similar to those of the load
following cases. This is because each HVAC unit would

Fig. 18. Impact of different control signal magnitudes on HVAC daily cycles.

Fig. 19. Impact of different control signal magnitudes on room temperature
profiles.

Fig. 20. Impact of different deadbands on room temperature profiles.

have switched on/off at its own rhythm if not controlled;
rearranging the HVAC units’ on/off time slots will not
significantly impact their total number of cycles and room
temperature profiles if the signal magnitude is close to
the magnitude and frequency of the normal HVAC load
variations, as shown in Figs. 18 and 19.
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Fig. 21. Impact of deadband on HVAC daily cycles.

Fig. 22. Impact of outdoor temperatures on control signal following
capabilities.

Fig. 23. Impact of different outdoor temperature profileson room temperatures
(deadband: ).

• As shown in Figs. 20 and 21, similar to the load following
cases, a narrower room temperature deadband limits the
capability of the HVAC unit to follow the ACE signal,
causing higher increases in daily cycles.

• At higher outdoor temperatures, the HVAC unit cycles less.
When the minimum power consumption of the aggregated
HVAC baseline load is lower than the required ACE down-
ward signals, all HVAC units will be forced off in the

Fig. 24. Impact of different outdoor temperature profiles on the HVAC daily
operation.

Fig. 25. Examples of out-of-capacity cases.

case, as shown in Fig. 22 through Fig. 24. There-
fore, the upward and downward load balancing capacity of
the HVAC load is limited by the baseline settings that are
determined by outdoor temperature profiles and customer
room temperature deadband preference. It is then critical
to predict the two factors accurately when considering the
design of such direct load control schemes.

• As shown in Figs. 25 and 26, for a higher control signal
magnitude of , the HVAC regulating capability
is soon depleted. All HVAC units are quickly synchro-
nized and frequently turned on and off to follow the control
signal. The on/off plot of an HVAC unit is shown in Fig. 27.
This behavior damages the HVAC unit lifetime and is un-
desirable. In addition, the room temperatures can no longer
be held within the desired range. This result shows that the
number of controlled HVAC units in response to a certain
magnitude of load balancing signal needs to be carefully
selected to leave a safe margin to prevent such synchro-
nized switching phenomena. A randomization period may
be needed periodically to regain the load diversity.
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Fig. 26. Cycling status of HVAC units when following ACE signals.

Fig. 27. Cycling status of an HVAC unit when following ACE signals
(deadband: ).

V. CONCLUSIONS

This paper presents the direct control of HVAC units to ad-
just their power consumption to follow intrahour load balancing
signals. First, a simplified model of a space heating unit was de-
velopedwhile considering the thermal energy balance. Then, the
baseline aggregated HVAC power output was estimated from
the modeled average load profile based on outdoor temperature
forecast. Next, the control method of HVAC units for intrahour
load balancing was proposed. Finally, operations of HVAC units
were numerically simulated, and their capability to provide load
following and regulation services was evaluated. The results in-
dicated that approximately 1000 HVAC units (rated at 6 kW
with deadband) can provide 24 hours of load following
or regulation services (1-MW bi-directional signals) by the pro-
posed control scheme. The modeling results suggest that with a
smart grid in place, load service providers can extend the con-
trol to TCAs and collect additional revenue from the ancillary
service market to recover the cost invested in the two-way com-
munication and control network. Customers can receive addi-
tional revenue by offering their appliances for high value load
balancing services and help integrate more renewable resources
into the power grid.
Our future work will focus on development of direct control

algorithms of different kinds of TCA loads and improving the
control and forecast accuracy using smart meter measurements
to reduce the need for communication between the TCAs and
the central controller.
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